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jl cp - v* jlc, < a, where e is a sufficiently small positive number. then it is said that 
the direction h* is a normal perturbation of the direction L. 

In addition to the problem (2. l), (1. l), let us consider the normally perturbed problem 
of the form a -- 

--$v -- ‘4* (5) w - B* (5) w = F* (5), 5fZG 

It is clear that if the boundary problem (1. l), (2.1) is quasi-correct, then the normally 
perturbed problem is also quasi-correct for sufficiently small E. 

In conclusion, let us examine the case when the vector h belongs to the class c. Then 
‘r’ = 2 (m - I). Therefore, x -Z -2, n = 0, 7l’ =z 3 for simply connected shells. This 

means that three conditions of the form (3.1) should be satisfied in order to realize a 
membrane state in a shell with one hole. If the contour L. of the middle surface passes 
along an isometrically conjugate line, then the corresponding surface bendings will be 
trivial B] and the formulated problem has a unique solution. For shells with three or 
more holes the membrane state will be quasi-correct since n = 9 and IZ’ = 3m - 3. 

For doubly connected shells of positive curvature the membrane state cannot always be 
realized ; however, if the hole contours of the shell coincide with isometrically conju- 
gate lines on the middle surface, then such a state is realized unconditionally. 
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The exact solutions given in [l] are generalized to the case of cylindrical and 
spherical sectors rotating about the azimuth relative to the coordinate origin 
either at a uniform rate or with uniform acceleration (or deceleration). The 
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class of equations of motion of the boundaries of the half-space (in the Carte- 
sian coordinates) which lead to exact solutions of the Fourier equationdefined 

in these domains, is enlarged. 

1. C&rte#lan coordinates. Let the domain in which the Fourier equation is 
defined be semi-bounded in the coordinate xi (i = 1 or i = 1,2 or i = 1, 2, 3) , i.e. 

xi E (Rio (t), m)and let the function tIi appearing in the formula (1.3) of [1] be an aux- 
illiary function with continuous first and second order derivatives. Then the formulas 

(1.4) - (1.6) of p] determine the form of the function tb relative to the law of motion 
of the boundary Ri co) for which the heat conduction equation written in the Cartesian , 
coordinates admits the exact solution obtained by separation of variables. 

2. Cylindrical coordinates. Exact solutions given in Sect. 2 of p] admit a 

generalization to cylindrical sectors rotating at a uniform rate or with a uniform acce- 
leration (deceleration). Motion in the z -direction can either be absent or belong to one 

of the types of motion determined by the formulas (1.4) -(l. 6) of Cl]. 
In fact, let us introduce in the equation 

r E (RI (t) , CA (t)) 1 cp E (Rio) (4, R(l) (0) 2 ’ 
z E (R(O) (t) ( I$) (L)) 

3 

where cz = const (in particular, zero or CO) and R,(l) - R,(O) = const,, the following new 

coordinates Y1 = r I RI, y2 = cp - Rz(@. ya = b - R,(O)) / 

where ‘1 = 1(3(l) - II,(“) if 1 f13(” (tcoo < 00 or ‘1 is some auxilliary function if 
l{s”) z 03 . We also introduce a new function V 

I/ = qv, q = (RI J&j)-’ oxp - f (y,?Rl/tl’ + 

(where q is determined using the method given in @I). Then we arrive at the following 

aV 
-x - + f (?/I Rl , y: + Rf’ , ysq -I- R;;‘) 

The above equation admits an exact solution obtained by separating the variables, if 

the conditions 
R,3R1” = const, R$0)” = const, t13rl” = const, q3R3(‘)” = const 

hold simultaneously. The assertion made above now follows from the second condition. 

3. SphericAl coordinatea. 3.1. Let the heat conduction equation depend 

only on a single spatial coordinate r. As we know, in this case we can introduce a new 

function IV = rl/ (U is the unknown function) and obtain an equation in IV which is 
analogous to the Fourier equation in the Cartesian coordinates. Consequently the results 
obtained in Sect. 1 are applicable in this case. 
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3.2. Let the domain be a spherical sector 

where c(, b, 1’ and b are constants. 
Performing the manipulations analogous to those in Sect. 2 we can confirm that the 

initial equation admits, as before, an exact solution, provided that the sector varies its 
radial dimensions according to the equation R,s RI” = const, at the same time rotating 
by the angle c about the coordinate origin at a uniform rate or with a uniform accele- 
ration (deceleration), i.e. when R2 (t) = jt4 t? -/- At f B (M, A and B are constants). 
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